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Overview

Mathematicians have developed a “finite calculus” analogous to the more
traditional infinite calculus, by which it is possible to approach summation
in a nice, systematic fashion.

Infinite calculus is based on the properties of the derivative operator D,
defined by

0f() = iy

F(x + h) — F(x)
; .

Finite calculus is based on the properties of the difference operator A,
defined by
Af(x) =f(x+1) — f(x).

The symbols D and A are called operators because they operate on
functions to give new functions ; they are functions of functions that
produce functions.
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Let f(x) = x™. Then Df(x) = mx™~!. But A does not produce an
equally elegant result. For example,

A(P) = 3x3 +3x + 1 # 352,

But there is a type of “mth power” that does transform nicely under A,
and this is what makes finite calculus interesting. Such mth powers
(factorial functions) are defined by the rule

xT=x(x—1)---(x —m+1), form>0.

There is also a corresponding definitions where the factors go up and up:

x"=x(x+1)---(x+m—1), form>0.

When m = 0, we have x2 = x® = 1, because a product of no factors is
conventionally taken to be 1 (just as a sum of no terms is conventionally

0.
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m

The quantity x™ is called “x to the m falling”, similarly, x™ is “x to the m

rising” .
These functions are also called falling factorial powers or rising factorial
powers, since they are closely related to the factorial function

n=n(n-1)---1.
In fact,
nl =n?=1",
We defined x2 for m > 0.
To get from x3 to x2, we divide by x — 2. That is, x2 = 5"
To get from x2 to x, we divide by x — 1. That is, x} = 2=

xL

To get from xL to x9, we divide by x. That is, x> = %~
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To go from x2 to x=L, we should divide by x + 1. Hence x=1 = i

1
(x+1)(x+2)--+(x+m)

We shall later define falling powers for real or even complex number m.

Similarly, x=2 = for m > 0.

1. Prove that the formula x™*" = x™(x — m)" (falling power version)

for falling powers (analogous to the law of exponents,
XMt = x™ 4 x" for ordinary powers).

Let m be an integer. Verify that

Ax™ = mx™=L  when m < 0.

Falling powers x™ are especially nice with respect to A.
A(x™) = mx—m_l,
mfl_

hence the finite calculus has a handy low to match D(x™) = mx
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The operator D of inifinite calculus has an inverse, the anti-derivative (or
integration) operator [. The Fundamental Theorem of Calculus relates
Dto [ :

g(x) = DF(x <:>/ () +c.

Here [ g(x)dx, the indefinite integral of g(x), is the class of functions
whose derivative is g(x) and ¢ for “indefinite integrals” is an arbitrary
constant.

Analogously, A has an inverse, the anti-difference (or summation)
operator ) ; and there is another fundamental theorem :

g(x) = Af(x) <= > g(x)ox = f(x) + c.

Here > g(x)dx, the indefinite sum of g(x), is the class of functions
whose difference is g(x) and ¢ for “indefinite sums” is an arbitrary
function p(x) such that p(x + 1) = p(x).
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2. Find Af(x), where f(x) is the periodic function a+ bsin27x.

Infinite calculus has definite integrals: If g(x) = Df(x), then

b b
| e = £

a

= f(b) — f(a).

Finite calculus has definite sums: If g(x) = Af(x), then

b
> 8699x = F(x)|. = 7(5) ~ 7(a).
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Assume that g(x) = Af(x) = f(x + 1) — f(x).
Special cases:
o If a= b, we have Zs g(x)ox = f(b) — f(a) = 0.
@ Next, if b=a+ 1, the result is

a+1

> g(x)ox = f(a+1) - f(a) = g(a).

@ More generally, if b increases by 1, we have the difference

b+1 b

Y g(x)ox =Y g(x)ox = [f(b+1)—f(a)] - [f(b) — f(a)]

= f(b+1)—f(b) = g(b).
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@ When a and b are integers with b > a,

b b—1
> g(x)oix =Y glk)= > g(k).
a k=0 a<k<b

In other words, the definite sums is the same as an ordinary sum with
limits, but excluding the value at the upper limit.

@ What happens when b < a?

b

b
Y g(x)oxf(b) — f(a) = —(f(a) — f(b)) = — D _ g(x)ox.

a

@ For any integers a, b, ¢

b c .
Zg(X)éx + Zg(x)éx = Zg(x)éx.

a b
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Suppose we want to find the sum of the form

b
Y glk) =) glx)ix.

a<k<b

If we are able to find an anti-difference function f such that

g(x)="f(x+1)—f(x),

then
Z gk) = Z f(x+1) — f(x) (telescoping series)
) = [Fla+1) - F@)] 4 [F(a+2) — F(a+1)] + - + [F(b) — £(b—1)]
f(b) — f(a).

We shall see that definite summation gives us a simple way to compute
sums of falling powers.
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Ordinary powers can also be summed in new way, if we express them in
terms of falling powers. For example,

K =k2+ kE
hence 5 )
ks ke|k=n 1 1
2 3 T 2 he 3"\ 3) 7Y
0<k<n
Replacing n by n+ 1 gives us yet another way to compute the value of

O, = Z k2

0<k<n

in closed form.

It is always possible to convert between ordinary powers and factorial
powers by using Stirling numbers, which will be later studied.

Falling powers are very nice for sums.
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Exercises

3. Prove that (x + y)2 = x2 + 2x1yL + y2

4. State and prove that the factorial binomial theorem.

Xm+1

m+1

b
holds for any

5. Prove that the summation property ZZ xTox =

integer m # —1 and any x.

6. Does the summation property hold for m = —17
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Recall that for integration we use
b b
/ x=Ldx = log x
a a

What is a finite analog of log x?
What is the function f(x) satisfying

when m = —1.

1
xt = 1 = Af(x) =f(x+1) — f(x).

Hence f(x) is the harmonic number

1 1
He=14 2+ 4 -.
2 X

Thus Hy is the discrete analog of the continuous log x.
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We shall define Hy for noninteger x and for large values of x, the value of
Hy — log x is approximately

1
0.577 + —.
+ 2x

Hence H, and log x are not only analogous, their values usually differ by
less than 1.

We can now give a complete description of the sums of falling powers:

b M+l b
meo )
Za:xéx—m+1a ifm# —1

a
H.| if m=-1.
b

This formula indicates why harmonic numbers tend to pop up in the
solutions to dicrete problems like the analysis of quicksort, just as so-called
natural logarithms aris naturally in the solutions to continuous problems.
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7. Prove that 2% is the discrete analog for €%, called the discrete
exponential function.

Despite all the parallels betweeen continuous and discrete math, some
continuous notions have no discrete analog.

For example, the chain rule for the derivative of a function of a function ;
but there is no corresponding chain rule of finite calculus, because there is
no nice form for Af(g(x)).

Discrete change-of-variables is hard, except in certain cases like the
replacement of x by ¢ + x.
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However, A(f(x)g(x)) does have a fairly nice form, and it provides us
with a reule for summation by parts, the finite analog of what infinite
calculus calls integration by parts.

Let us recall the formula
D(uv) = uDv + vDu

of infinite calculus leads to the rule for integration by parts,

/uDv:uv—/vDu,

after integration and rearranging terms; we can do a similar thing in finite
calculus.

We start by applying the difference operator to the product of two
functions u(x) and v(x):

A(u(x)v(x)) = u(x+1)v(x+1)— u(x)v(x)
u(x+ 1)v(x + 1) — u(x)v(x + 1) + u(x)v(x + 1) — u(x)v(x)
u(x)Av(x) + v(x + 1) + v(x + 1)Au(x).
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This formula can be put into a convenient form using the shift operator
E, defined by

Ef(x) =f(x+1).
Hence A(uv) = uAv + EvAu.

Taking the indefinite sum on both sides of this equation, and rearranging
its terms, yields the rule for summation by parts:

Z ulAv = uv — Z EvAu.

This rule is useful when the sum on the left is harder to evaluate than the
one on the right.

8. Find the sum of the following :

s i:k?k o > kH.
k=0

0<k<n
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Infinite Sums

@ The methods we have used for manipulating > 's are not always valid
when infinite sums are involved.

@ There is a large, easily understood class of infinite sums for which all
the operations we have been performing are perfectly legitimate.

Suppose all the terms ay are non-negative. If there is a bounding
constant A such that
IRy

keF

for all finite subsets F of K, then we define Z to be the least such A.
keK

It follows from a well-known properties of the real numbers that the set of

all such A always contains a smallest element.

P. Sam Johnson Finite and Infinite Calculus & Infinite Sums



The definition has been formulated carefully so that it doesn’t depend on
any order that might exist in the index set K

But there is no bounding constant A, we say that

haveE a, = lim g ag.
n—o0

k>0 k=0

° E x¥ can be calculated as follows:
k>0

1 .
Zxk lim 1—Xn+1 T—x |f0§X<1
n—oo 1 —x o0 ifXZl.

P. Sam Johnson Finite and Infinite Calculus & Infinite Sums 19/23



1 5 . k=t
° g(k+1)(k+2 _n"ﬂéozk —n'L”So—T]o =1L
@ There is something flaky about a sum that gives different values
when its terms are added up in different ways.

@ How to find Z a, where ay is a real-valued term defined for each
keK
ke K?
@ Any real number x can be written as the difference of its positive and
negative parts, x = x* — x7, where x* = x.[x > 0] and
X~ = —x.[x < 0]. Because a, and a, are non-negative, we can find
. .. + —
value for the infinite sums Z a, and Z a, .
keK keK

Hence Z =ax = Z a;f — Z a, unless the right-hand sums are

kek kek kek
both equal to cc.
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Let AT = Za;“ and A= = Za;.

keK keK

e If AT and A~ are both finite, the sum Z ak is said to converge

keK
absolutely to the value A= AT — A~

e If AT = oo but A~ is finite, the sum Z ay is said to diverge to +oo.

keK
e If A~ = oo but AT is finite, the sum Z a is said to diverge to —oo.
keK
o If At = A~ = 0o, we call Z a is undefined.

kekK

9. We started with a definition that worked for non-negative terms, then
we extend it to real-valued terms. Extend the definition if the terms
of complex numbers.
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All of the manipulations we have done for finite sums are perfectly valid
whenever we are dealing with “sums that converge absolutely”.

Each of the following transformation rules preserves the value of all
absolutely convergent sums.

distributive law

commutative law

associative law

rule for summing first on one index variable.

Absolutely convergent sums over 2 or more indices can always be summed
first with respect to any one of those indicies.

P. Sam Johnson Finite and Infinite Calculus & Infinite Sums 22/23



References

1. Graham, Knuth and Patashnik, “Concrete Mathematics — A
Foundation for Computer Science”, Pearson Education.

2. Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger,
“A= B" AK Peters Ltd., Wellesley, Massachusetts.

3. Herbert S. Wilf, “Generatingfunctionology”, Third Edition, AK
Peters Ltd., Wellesley, Massachusetts.

P. Sam Johnson Finite and Infinite Calculus & Infinite Sums 23/23



